New ‘Trojan Horse’ Antibody Strategy Against Ebola

Read Time:10 Minute, 15 Second

By Albert Einstein College of Medicine, Special for  USDR

In research published online today in Science, a team of scientists describe a new therapeutic strategy to target a hidden Achilles’ heel shared by all known types of Ebola virus. Two antibodies developed with this strategy blocked the invasion of human cells by all five ebolaviruses, and one of them protected mice exposed to lethal doses of Ebola Zaire and Sudan, the two most dangerous. The team included scientists from Albert Einstein College of Medicine, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Integrated Biotherapeutics,Vanderbilt University Medical Center, and The Scripps Research  Institute.

Ebolaviruses cause a highly fatal disease for which no approved vaccines or treatments are available. About two dozen Ebola outbreaks have been documented since 1976, when infections first occurred in villages along the Ebola River in Africa. The largest outbreak in history—the 2014-2015 Western Africa epidemic—caused more than 11,000 deaths and infected approximately 29,000  people.

Monoclonal antibodies, which bind to and neutralize specific pathogens and toxins, have emerged as the most promising treatments for Ebola patients. A critical problem, however, is that most antibody therapies target only one specific ebolavirus. For example, the most promising experimental therapy—ZMapp™, a cocktail of three monoclonal antibodies—is specific for Ebola virus Zaire, and doesn’t work against the other two viruses (Sudan and Bundibugyo), which have both caused major outbreaks. The broad-spectrum antibodies developed by the research team represent an important advance against one of the world’s most dangerous  pathogens.

Exploiting Ebola’s Achilles’  Heel
In 2011, a team that included co-senior authors Kartik Chandran, Ph.D., professor of microbiology & immunology at Einstein, andJohn M. Dye, Ph.D., chief of viral immunology at USAMRIID, discovered that all filoviruses (the family to which ebolaviruses and the more distantly related Marburg virus belong) have an Achilles’ heel: To infect and multiply in human cells, they must all bind to a host-cell protein called Niemann-Pick C1  (NPC1).

But capitalizing on that knowledge required a completely new approach to targeting viruses: exploiting the fact that Ebola and many other viruses must enter host cell compartments called lysosomes. Once safely inside the lysosomes, the viruses transform and expose key portions of their exterior that the research team successfully targeted using monoclonal  antibodies.

To gain entry to cells, filoviruses bind to the host cell’s outer membrane via glycoproteins (proteins to which carbohydrate chains are attached) that bristle from the virus’s surface. (See illustration.) A portion of the cell membrane then surrounds the virus and pinches off, eventually developing into a lysosome—a membrane-bound, intracellular compartment filled with enzymes to digest foreign and cellular  components.

Filoviruses then use the host cells’ resources to break out of their lysosomal “prisons” so they can enter the host cell’s cytoplasm to multiply. Enzymes in the lysosome slice a “cap” from the virus’s glycoproteins, unveiling a site that binds to the NPC1 embedded in the lysosome membrane. NPC1, which normally helps transport cholesterol within the cell, offers Ebola virus its only means of escaping the lysosome and multiplying. By fitting its protein “key” into the NPC1 “lock,” the virus fuses itself to the lysosome membrane. (See illustration close-up.) Now the virus can propel its RNA from the lysosome and into the cell’s cytoplasm, where it can finally replicate  itself.

Penetrating an Invisibility  Cloak
The research team realized that monoclonal antibodies could potentially thwart all filovirus infections by neutralizing the viral protein that binds to NPC1, or by neutralizing NPC1 itself. There was just one problem: Reflecting Ebola’s ingenuity, both targets reside only in lysosomes deep within cells—making them invisible to the immune system and shielded from attack by conventional  antibodies.

Dr. Chandran, Dr. Dye and co-senior author Jonathan R. Lai, Ph.D., associate professor of biochemistry at Einstein and an expert in engineering antibodies, devised a clever “Trojan Horse” strategy for overcoming the virus’s invisibility cloak: Just as the citizens of Troy unwittingly pulled a wooden horse filled with Greek soldiers into their walled city, they tricked the viruses into carrying the means of their own destruction along with them into host  cells.

To do so, the research team synthesized two types of “bispecific” antibodies, each consisting of two monoclonal antibodies combined into one molecule. One bispecific antibody was devised to neutralize the viral protein that binds to NPC1, the other to target NPC1. Both had one monoclonal antibody in common: antibody FVM09, which binds to the surface glycoproteins of all ebolaviruses while the virus is outside cells, allowing the bispecific antibodies to hitch a ride with the virus into the lysosome. FVM09 was developed by co-senior author M. Javad Aman, Ph.D. at Integrated  Biotherapeutics.

Once in the lysosome, the bispecific antibodies are released from the viral surface when enzymes in the lysosome slice off the glycoprotein caps—allowing the business ends of the bispecific antibodies to swing into  action.

One bispecific antibody combined FVM09 with antibody MR72, which was isolated from a human survivor of Marburg virus infection by co-senior author James E. Crowe Jr., M.D., at Vanderbilt University Medical Center. MR72 targets the NPC1-binding viral protein that is unveiled by all filoviruses in lysosomes. The second bispecific antibody links FVM09 to antibody mAb-548, developed at Einstein, which zeroes in on NPC1. With one bispecific antibody targeting the “lock” (NPC1) and the other targeting the “key” (the virus’s NPC1-binding protein), both had the potential for preventing Ebola virus from interacting with NPC1 and escaping from the lysosome into the  cytoplasm.

Putting Antibodies to the  Test
The researchers then tested their bispecific antibodies against ebolaviruses in the lab. They initially used a harmless virus (vesicular stomatitis virus) that had been genetically engineered to display glycoproteins from all five ebolaviruses on its surface. The researchers incubated the bispecific antibodies with the Ebola-like viruses and then added the mixtures to human cells in tissue culture. Both bispecific antibodies successfully neutralized all five viruses. Work in the high-containment facilities at USAMRIID confirmed that these antibodies also blocked infection by the actual Zaire, Sudan, and Bundibugyo  ebolaviruses.

Next came studies at USAMRIID to test whether the two bispecific antibodies could protect mice infected with the two most dangerous ebolaviruses, Zaire and Sudan. Researchers, led by Dr. Dye, administered the bispecific antibodies two days after mice were exposed to a lethal dose of  virus.

The bispecific antibody that targeted the viral binding protein provided good protection to mice exposed to both viruses. As expected, the bispecific antibody that targeted NPC1 did not protect mice. It was designed to bind specifically to human NPC1, which differs slightly in structure from the NPC1 protein found in  mice.

As a next step, both bispecific antibodies will need to be tested in nonhuman primates, the current gold standard for anti-Ebola  therapeutics.

The paper is titled “A ‘Trojan Horse’ Bispecific Antibody Strategy for Broad Protection Against Ebolaviruses.” In addition to Drs. Chandran, Lai, Dye, Aman and Crowe, contributors include co-first author Anna Wec, M.S., co-first author Elisabeth Nyakatura, Ph.D., Eva Mittler, Ph.D., John Christin, Rohit Jangra, Ph.D., M.V.Sc., and Sushma Bharrhan, Ph.D., all at Einstein; co-first authorAndrew Herbert, Ph.D., Ana Kuehne, and Russell Bakken at USAMRIID; Katie Howell, Ph.D., Frederick Holtsberg, Ph.D., and Sergey Shulenin, Ph.D., at Integrated Biotherapeutics, Inc; Andrew Flyak, Ph.D., at Vanderbilt University Medical Center; andZachary Bornholdt, Ph.D., and Erica Ollmann Saphire, Ph.D., at The Scripps Research Institute. This work was supported by three grants from the National Institutes of Health, U19 AI109762, R01 AI088027, and 1R41 AI122403; by Joint Science and Technology Office-Defense Threat Reduction Agency (DTRA) award CB04088, and DTRA award  HDTRA1-13-C-0015.

Jonathan R. Lai, Ph.D., co-senior author: “It’s impossible to predict where the next ebolavirus outbreak will occur or which virus will cause it. So the best therapy would be a monoclonal antibody that is active against the glycoproteins of all five ebolaviruses—and until our study, no such antibody had demonstrated the ability to do that. We hope that further testing in nonhuman primates will establish our antibodies as safe and effective for treating those exposed to any  ebolavirus.”

Kartik Chandran, Ph.D., co-senior author: “We would love to extend this approach to Ebola’s distant cousin, Marburg virus, to create a true pan-filovirus therapeutic antibody. Furthermore, we hope that our Trojan Horse antibody strategy of targeting viruses in lysosomes might work against other disease-causing viruses like flu, dengue, or Lassa, which, like Ebola,  also enter host-cell lysosomes as part of their life  cycles.”

John M. Dye, Ph.D., co-senior author:  “Our team of scientists took the ‘Trojan Horse’ concept from the chalkboard to a product that has the capacity to provide a viable treatment for all filoviruses, both known and emerging.  This work highlights the power of governmental, academic and industrial researchers collaborating together to solve a complex and important public health  problem.”

M. Javad Aman, Ph.D., co-senior author: “The success in co-opting the virus itself to dispatch a lethal weapon against ebolaviruses in the lysosomes marks a turning point in development of smart therapeutics against infectious diseases.  Similar strategies could be devised against several other viral and bacterial pathogens or toxins that are unleashed inside the lysosomal  compartments.”

About Albert Einstein College of  Medicine
Albert Einstein College of Medicine is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2015-2016 academic year, Einstein is home to 731 M.D. students, 193 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 278 postdoctoral research fellows. The College of Medicine has more than 1,900 full-time faculty members located on the main campus and at its clinical affiliates. In 2015, Einstein received $148 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center—Einstein’s founding hospital, and three other hospital systems in the Bronx,Brooklyn and on Long Island, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu, read our blog, follow us onTwitter, like us on Facebook, and view us on  YouTube.

About United States Army Medical Research Institute of Infectious Diseases
USAMRIID’s mission is to provide leading edge medical capabilities to deter and defend against current and emerging biological threat agents. Research conducted at USAMRIID leads to medical solutions—vaccines, drugs, diagnostics, and information—that benefit both military personnel and civilians. The Institute plays a key role as the lead military medical research laboratory for the Defense Threat Reduction Agency’s Joint Science and Technology Office for Chemical and Biological Defense. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit  www.usamriid.army.mil.

About Integrated Biotherapeutics  (IBT)
IBT is a biotechnology company focused on the discovery of novel vaccines and therapeutics for emerging infectious diseases with a pipeline that includes promising product candidates for bacterial and viral infections including unique pan-filovirus candidates, vaccines and a variety of other product candidates for emerging viruses.  Located in Rockville, Maryland, IBT has a close working relationship with United States Government agencies including the National Institute of Allergy and Infectious Diseases (NIAID/NIH), National Cancer Institute (NCI), Department of Defense (DOD), United States Army Medical Research Institute of Infectious Diseases (USAMRIID) as well as many biotechnology and pharmaceutical companies and academic laboratories.  For more information, visit  integratedbiotherapeutics.com.

 

SOURCE Albert Einstein College of  Medicine

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %
Videos