Reducing Heart Failure

Read Time:2 Minute, 40 Second

By Experimental Biology and Medicine, Special for  USDR

 

An article published in Experimental Biology and Medicine (Volume 242, Issue 5, March, 2017) identifies a new signaling pathway that promotes heart failure in pulmonary hypertension.  The study, led by Dr. Matthias Brock, from the Division of Pulmonology, University Hospital of Zurich, University of Zurich in Switzerland, reports that inhibition of MALAT1, a long noncoding RNA, reduces heart hypertrophy in mice with pulmonary  hypertension.

Pulmonary hypertension (PH) is a chronic increase in blood pressure within the arteries, veins or capillaries of the lungs that results in shortness of breath, dizziness, fainting, leg swelling and other symptoms. If left untreated, PH can lead to heart failure.  PH can be attributed to many different clinical and pathophysiological conditions.  But, the common final event is remodeling of the pulmonary vessels. This remodeling is due to abnormal proliferation, death and migration of endothelial cells as well as vascular smooth muscle cells. Although tumor-like alterations in smooth muscle and endothelial cells are important events, the signaling pathways responsible for vascular remodeling in PH are not well defined.  Delineating these pathways will provide new targets for drug discovery and ultimately new treatments for  patients.

Long noncoding RNAs (lncRNAs) are large (<200 nt) RNA molecules that most often do not encode proteins and function by regulating gene expression. MALAT1, or metastasis-associated lung adenocarcinoma transcript 1, is an lncRNA that controls normal vascular smooth muscle cell proliferation and apoptosis.  In this study, Dr. Brock and colleagues used cell culture and in vivo model systems to examine the role of MALAT1 in hypoxia-induced PH. Hypoxic conditions increased MALAT1 expression/activity. Conversely, knockdown of MALAT1 inhibited vascular smooth muscle cell migration and proliferation, most likely via alterations in the expression of cyclin dependent kinases.  In an in vivo model, MALAT1 expression/activity was associated with right ventricular hemodynamics, and therapeutic intervention directed against MALAT1 ameliorated right heart hypertrophy.  Dr. Brock said that this study “provides novel insights in the pathogenesis of pulmonary vascular remodelling and confirms that lncRNAs affect the expression of important cell cycle regulators that favour the pro-proliferative phenotype of vascular smooth muscle  cells.”

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said, “Brock and colleagues provide the seminal study of the functional role of MALAT1 in the pulmonary vasculature. They demonstrate that MALAT1 is a potential target for reducing heart hypertrophy during hypoxia induced pulmonary  hypertension.”

About Experimental Biology and  Medicine

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal, please visit  http://ebm.sagepub.com/.

Disclaimer: Newswire is not responsible for the accuracy of news releases posted to Newswire by contributing institutions or for the use of any information through the Newswire  platform.

This content was issued through the press release distribution service at Newswire.com. For more info visit:  http://www.newswire.com

SOURCE Experimental Biology and  Medicine

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %
Videos